

LA-UR-14-25278

Approved for public release; distribution is unlimited.

Title: Laboratory Science Pillars & Strategic Context

Author(s): Sarrao, John Louis

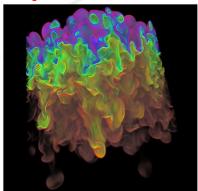
Intended for: Peter Littlewood visit, 7/18/14

Issued: 2014-07-14

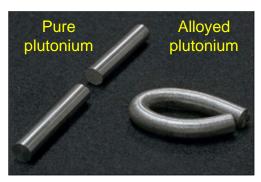
Laboratory Science Pillars & Strategic Context

John L. Sarrao

Our Vision, Mission, Values, Goals


Vision	Our Values	Our Goals
Delivering Science and Technology to protect our nation and promote world stability.	We value our people and the extraordinary talents brought to Los Alamos to accomplish our mission. Our values demonstrate this point and communicate the essence of the Laboratory. Service: Serving our country, our partners, our community, and each other. Excellence: Ensuring timely mission execution through scientific, operational, and business	Deliver national nuclear security and broader global security mission solutions, and Foster excellence in science and engineering disciplines essential for national security missions, by
Mission To solve national security challenges through scientific excellence.	 Integrity: Building trust through intellectual honesty, ethical conduct, and individual responsibility. Teamwork: Collaborating with colleagues and partners, respecting diverse opinions and backgrounds, vigorously debating alternatives, and coming together to achieve the best solutions. Stewardship: Being good stewards of the taxpayers' dollars, the Laboratory, our community, and the environment Safety and Security: Ensuring that safety and security are integral to everything we do. 	Attracting, inspiring, and developing world-class talent to ensure a vital future workforce, and Enabling mission delivery through next-generation facilities, infrastructure, and operational excellence.

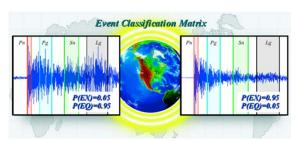
As a Laboratory, Los Alamos stewards broad & deep STE capabilities for national security missions



---- EST.1943 -

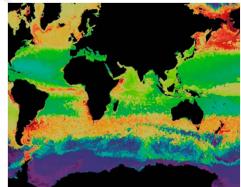
Stockpile Stewardship

Hydrodynamics: Turbulence



Plutonium Science: Metallurgy

Global Security



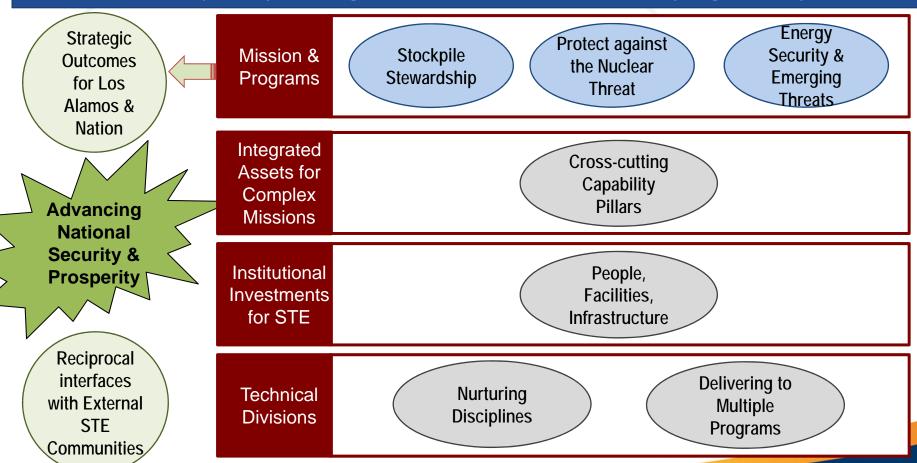
Sensors:
Nuclear detonation verification and treaty monitoring



Seismic Detection of Nuclear Explosions

Energy Security

Climate/Energy Impacts: Measurement, simulation, prediction



ST&E is organized to maximize Los Alamos' value as a National Security Laboratory

Multi-disciplinary leverage of STE excellence for multi-program impact

ST&E Capability Pillars:

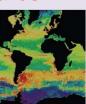
Build cross-disciplinary teaming expertise for current and future missions

SCIENTIFIC EXCELLENCE FOR NATIONAL SECURITY

LANL Missions

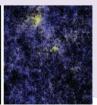
Nuclear Deterrence

Global Security


Energy & Emerging Threats

Integrating Assets for Program Execution

Science of Signatures



Information, Science, and Technology for Prediction

CAPABILITY PILLARS

Materials for the Future

Nuclear and Particle Futures

Integrating IS&T for Prediction is a Cross-Cutting Los Alamos

EST. 1943 ·

Materials for the Future Pillar

Science of Signatures Pillar

Nuclear and Particle Futures Pillar

IS&T Pillar

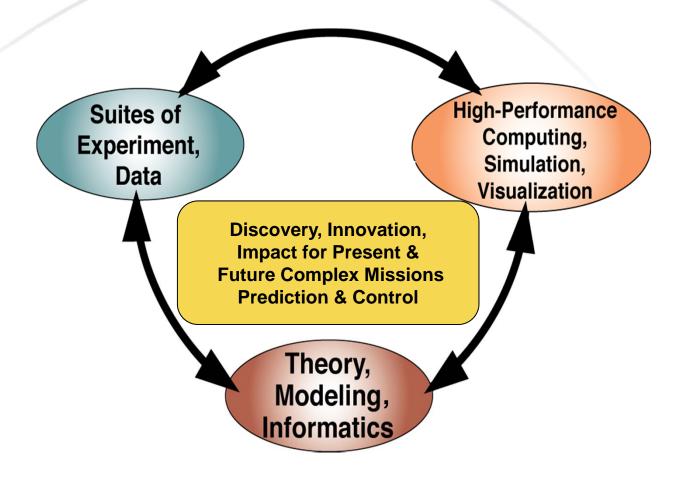
Co-Design

Applied Computer Science
Computational Mathematics
Computational Physics
Novel Computing
Simulation Science

Data Science @ Scale

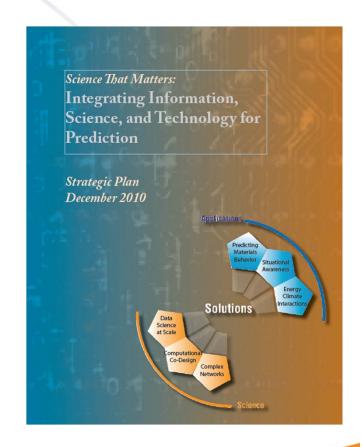
Data Fusion
Image and Signal
Processing
Library Science
Machine Learning
Statistics and UQ
Viz and Data Analytics

Complex Networks


Process Modeling
CyberSecurity
Synthetic Cognition
QIS

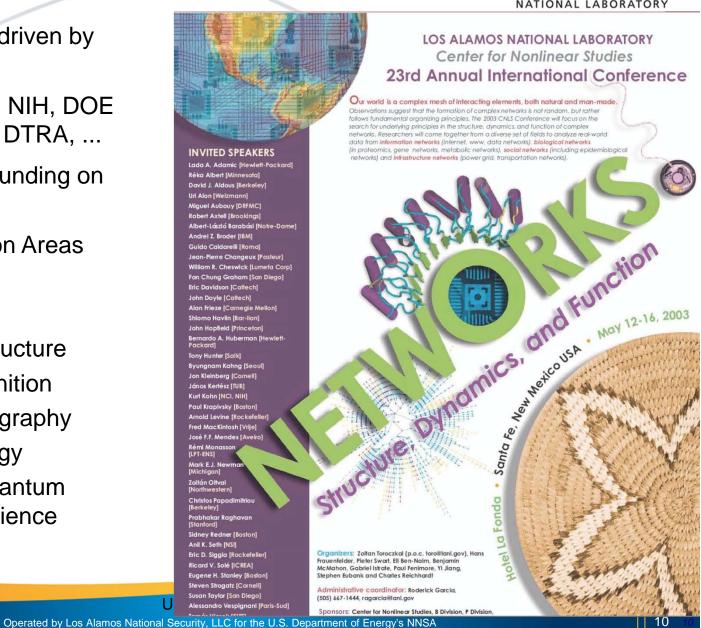
Underpinning High Performance Computing

CoDesign: Integrated, optimal resource allocation to solve problems -- is how we do our work



IS&T Capability Pillar: Connects to and integrates many fields and activities across the Laboratory

- IS&T Leverages advances in theory, algorithms, and the exponential growth of high-performance computing and data to accelerate the integrative and predictive capability of the scientific method
- Mathematics, computer science, and technologies required to extract information, knowledge, and insight from data
- Focuses on the integration of LANL capabilities for understanding, prediction, and design of complex, natural and engineered systems

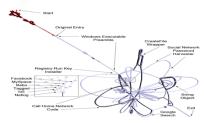


Complex Networks

Los Alamos has been a leader in complex networks since 2003

- Local experience driven by real problems
- Funded by LDRD, NIH, DOE Office of Science, DTRA, ...
- Steadily growing funding on classified projects
- Specific Application Areas
 - Cybersecurity
 - Smart Grid
 - Critical Infrastructure
 - Synthetic Cognition
 - Network Tomography
 - Systems Biology
 - Networked Quantum Information Science

Cyber Security Science at Los Alamos 30 Years of Focused National Security Sciences Alamos


VISIBILITY & SENSING

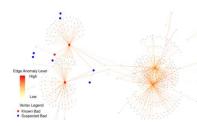
CYBER
ANALYTICS &
DETECTION

PREDICTIVE VULNERABILITY ANALYSIS

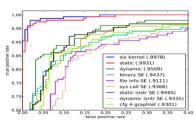
RESILIENT SYSTEMS

New Sensors

Malware execution & memory image analysis



System mapping & Real-time visualization



Distributed & collaborative sensors

Connect the Dots

Anomalous patterns in communication graphs

0-day malware detection & phylogenetics

Model-based Prediction

Resilience metrics for modeled systems

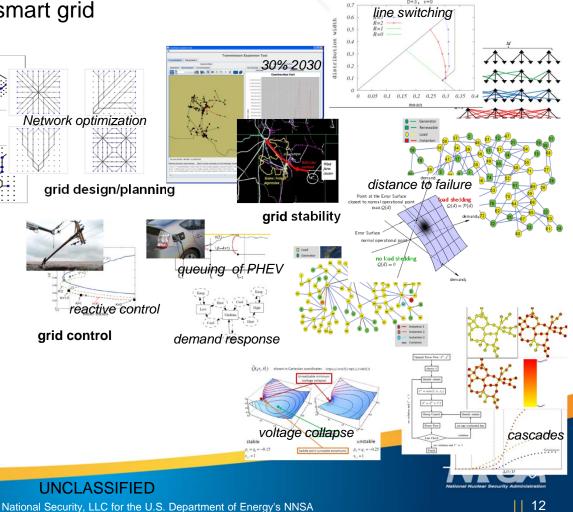
High-fidelity models of critical infrastructure (telcom, power, etc.) provide asset ranking, sensitivity analysis, interdependency

Quantified Prevention

Quantum keying

Viral cyber C2

Automatic response & quarantine

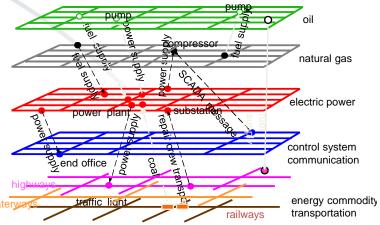

Complex Networks - Optimization & Control Theory for Smart Grids

Future grid use sensors, communication, & computation to improve efficiency, stability, & control

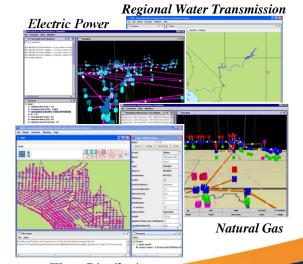
Network models and tools for smart grid

Design/Planning

- Control
- **Stability**
- Modeling consumer response
- Renewables placement, sizing, and storage in existing grid



Infrastructure Models and Interdependency Analysis

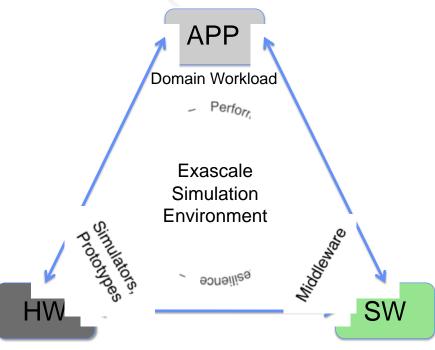


Network (Graph) Analysis

- Comprehensive analysis of infrastructure response and restoration for natural events
- Identification of critical infrastructure facilities/components
- Analysis of infrastructure interdependencies
- Global issues and interdependencies
- Risk assessment threat (natural event) and vulnerability

Representation of physical interdependencies

Water Distribution



Computational Codesign

Co-design: process by which a collection of experts in hardware, software, applied mathematics, and domain science work together to enable scientific discovery

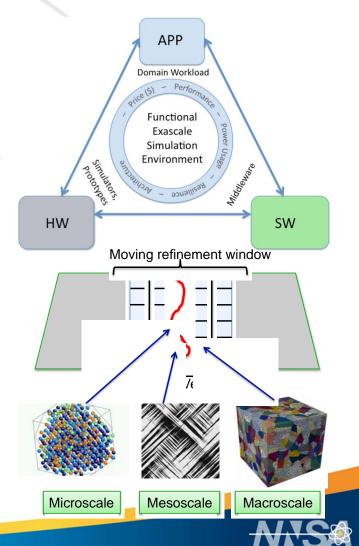
Los Alamos NATIONAL LABORATORY

- Co-design is a process, not a goal unto itself
- Primary funders of this work include NNSA/ASC, SC/ASCR, DoD, NSF, & LDRD
- Directly underpins LANL's primary mission
- Cuts cross a wide swath of LANL scientists from different directorates including Science/Tech/Engineering, Weapons, Global Security

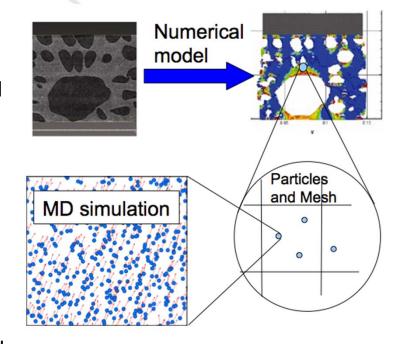
The process of co-design as presented in the ECDC White Paper written by 5 exascale co-design centers (including the ExMatEx center proposed by LANL)

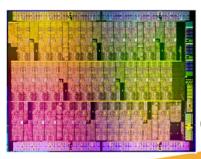
Computational Co-Design Enables Scientific Discovery by Bringing together Experts from Multiple Disciplines

- Computer Architectures will change dramatically over the next few years
- The complexity of using these resources will challenge domain scientists
- Introduces agility into the software development process
 - Architectures are changing and scales are unprecedented
 - Flops/memory/power balance is reversed
 - Complexity has increased to the point that mapping algorithms to hardware is non-trivial
 - The model of domain-scientist-as-computer-scientist no longer works
 - Success on the next generation of machines will require extensive collaboration between domain scientists, computer scientists, and hardware manufacturers



Exascale Co-design Center for Materials in Extreme Environments (ExMatEx) (ASCR)


- One of three* DOE/SC/ASCR co-design centers started in August 2011
 - Large scale collaborations between national labs, academia, and vendors
 - *Others are: CESAR (nuclear energy), ExaCT (combustion)
- Our goal is to establish the relationships between algorithms, software stack, and architectures needed to enable exascaleready materials science apps in ~2020.
- We will exploit hierarchical, heterogeneous architectures to achieve more realistic large-scale simulations with adaptive physics refinement.



Computational Codesign for Multi-Scale Application in the Natural Sciences (CoCoMANS) Los Alam NATIONAL LABORA

- Project goal: Forge a qualitatively new capability exploiting evolving high-performance computer architectures for multiple national-security critical application areas.
 - Scale-bridging algorithms representing materials science, plasma physics, and climate modeling.
- Scale-bridging approach: Material Point Method (MPM) replaces an empirical constitutive model with direct molecular dynamics (MD) computations of the stress at material points.
- Initial computational co-design effort has focused on node-level MD, e.g. MIC.

Intel "Knights Ferry" Many Integrated Core (MIC)

Data Science at Scale

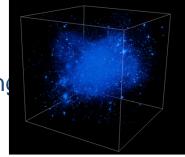
Data Science at Scale is an emerging paradigm

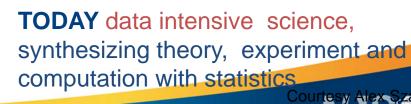
Laboratory's mission pursued via experimental, theoretical and computational science

- The analysis of scientific data
 - **Data science**
 - math, statistics, data engineering, pattern recognition and learning, advanced computing, visualization, uncertainty modeling, data warehousing, high performance computing
 - Algorithms and infrastructure
 - Goal of extracting meaning from data and creating data products

THOUSAND YEARS AGO science

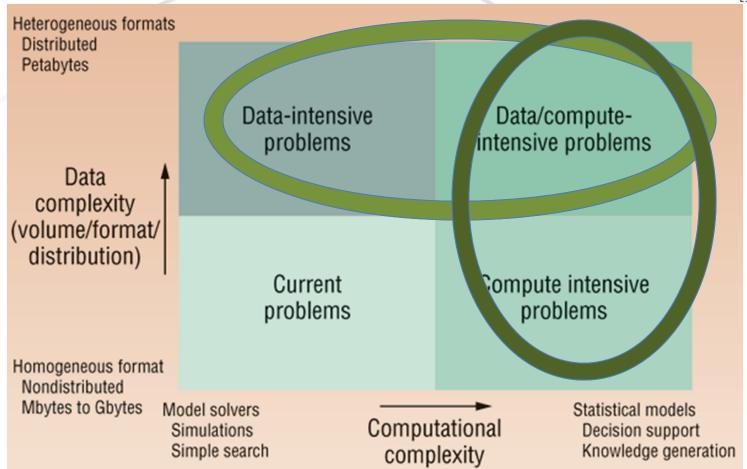
was empirical describing natural phenomena


$$\left(\frac{a}{a}\right)^2 = \frac{4\pi G\rho}{3} - K\frac{c^2}{a^2}$$

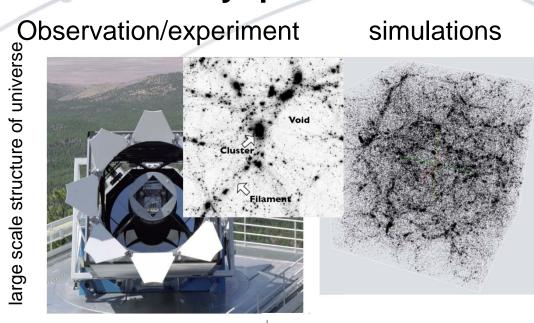

LAST FEW HUNDRED YEARS

 $= \frac{4\pi G\rho}{3} - K \frac{c^2}{a^2}$ theoretical branch using models, generalizations

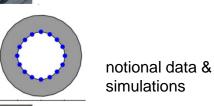
LAST FEW DECADES a


computational branch simulating complex phenomena

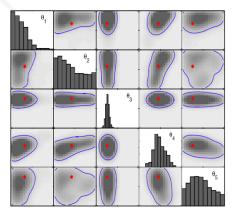
LANL is pursuing Data Science along both complexity axes

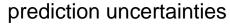


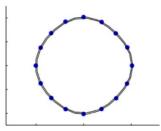
Ian Gorton, Paul Greenfield, Alex Szalay, Roy Williams, "Data-Intensive Computing in the 21st Century," Computer, pp. 30-32, April, 2008


Fusing simulations and observations for prediction and uncertainty quantification

simulations


Hydrodynamic behavior





Calibration: finding 1943 parameter settings consistent with observations

Statistical methods originally developed to support NW certification have been adapted to address key questions in cosmology. A sequence of simulations is combined with physical observations to constrain unknown model parameters and give prediction uncertainties.

Visualization and Analysis of Massive (including Los Alamos NATIONAL LABORATOR)

- LANL exploring "Middle Ways" between numerically-intensive and data-intensive supercomputing
 - Need for interactive scientific visualization of massive data quantities
- Developing novel ways to use emerging computer hardware to enable realtime visualization and analysis of massive streaming datasets
 - Use active storage and networks
 - Examples: situational awareness, cyber, space, infrastructure, space...
- Will enable a system that provides real-time:
 - Processing (correlation) of incoming measurements
 - Analysis of correlated data to identify events of interest, their storage and use

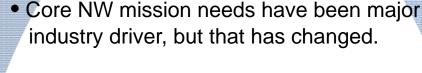
Immersion Visualization (CAVE)

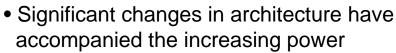
LANL has been a Pioneer of Cutting Edge Computing for 70 Years

[Small/large core memory]

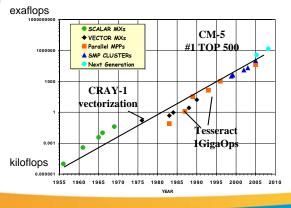
Cray 1 1976 [Vector machine]

Cray X-MP 1983


TMC CM-5 1992 [hypercube]



Blue Mountain 1998 [Massively parallel]



 Resulted in rich capability of coupling scientific algorithms to varied architectures (i.e. scaling, messaging, and vectorization)

Roadrunner 2005-2008 [Hybrid architecture]

LANL provides major HPC systems (& significant broader capability) for mission execution

Classified ASC HPC Systems

Typhoon¹: Appro, 106 teraflop/s **Cielo**²: Cray XE6, 1370 teraflop/s

Luna¹: Appro, 473 teraflop/s

Viewmaster²: Appro, Visualization

Roadrunner retired 04/13

Unclassified HPC Systems

Conejo¹: SGI, 53 teraflop/s

Mustang¹: Appro, 353 teraflop/s

Pinto¹: Appro, 47 teraflop/s Lobo¹: Appro, 38 teraflop/s

Mapache¹: SGI, 50 teraflop/s

Moonlight³: Appro, 488 teraflop/s

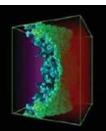
Cielito²: Cray, 10 teraflop/s

Lightshow: Appro, Visualization

Darwin: test bed for technology/architecture exploration

1- Capacity

2- Capability


3- Advanced Architecture

ASC Funded

Institutionally Funded

ISTI

INFORMATION SCIENCE & TECHNOLOGY INSTITUTE

A family of strategic partnerships and collaborations with leading research universities and government institutions and organizations. ISTI was formed to support IS&T at LANL broadly to meet the decadal challenges in the information, computer, computational, and knowledge sciences.

- Meet the next decade's challenges in the information, computer, computational, and knowledge sciences.
- Partner with the leading research universities in the targeted challenge areas (Collaborative Research Program)
- Be a vehicle to foster strong technical collaboration and collaborative research
- Work with Directorates and line orgs to support programmatic goals and to develop capability in strategic science & technology areas.
- Provide networking, research, revitalization, and educational opportunities to LANL staff.

Integrating IS&T for Prediction is a Cross-Cutting Los Alamo

- EST. 1943

Materials for the Future Pillar

Science of Signatures Pillar

Nuclear and Particle Futures Pillar

IS&T Pillar

Co-Design

Applied Computer Science
Computational Mathematics
Computational Physics
Novel Computing
Simulation Science

Data Science @ Scale

Data Fusion
Image and Signal
Processing
Library Science
Machine Learning
Statistics and UQ
Viz and Data Analytics

Complex Networks

Process Modeling
CyberSecurity
Synthetic Cognition
QIS

Underpinning High Performance Computing

